The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

نویسندگان

  • Chee Kent Lim
  • Karl A. Hassan
  • Sasha G. Tetu
  • Joyce E. Loper
  • Ian T. Paulsen
چکیده

One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5.

Zinc is an important nutrient but can be lacking in some soil environments, influencing the physiology of soil-dwelling bacteria. Hence, we studied the global effect of zinc limitation on the transcriptome of the rhizosphere biocontrol strain Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens). We observed that the expression of the putative zinc uptake regulator (Zur) gene was upregu...

متن کامل

Production of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System

Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...

متن کامل

Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene.

The biological availability of iron in the rhizosphere was assessed by evaluating ice nucleation activity (INA) expressed in situ by Pseudomonas fluorescens Pf-5 containing a transcriptional fusion (pvd-inaZ) of an iron-regulated promoter to an ice nucleation reporter gene (inaZ). Pf-5 containing pvd-inaZ expresses INA that is inversely related to the iron availability of a growth medium (J. E....

متن کامل

The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control.

ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes....

متن کامل

Effect of tannic acid on the transcriptome of the soil bacterium Pseudomonas protegens Pf-5.

Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012